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A b s h d .  In this paper, nonlinear superposition formulae of ule differential-difference analogue 
of the ~ d v  equation and two-dimensional To& equation are proved rigorously. Some particular 
solutions of the differential-difference analogue of the Kdv equation are given as an illushative 
application of the obtained result. 

1. Introduction 

It is known that many integrable nonlinear equations share some common features, among 
which are the so called Backlund transformations (ETS). We can usually derive the nonlinear 
superposition formula from the commutability of BTS. Unfortunately, there is no rigorous 
proof for the commutability of BTs for a general nonlinear evolution equation [1,2]. 
Therefore it is worthwhile to prove a nonlinear superposition formula directly. In 1978, 
Hirota and Satsuma [3] obtained simple nonlinear suerposition formulae in bilinear form of 
some celebrated equations such as KdV, MKdV, SG etc. Until now, some progress has been 
made in this field. However most work has only been done in (1 + 1)-dimensional nonlinear 
differential equations [4-141 and (1 + Z)-dimensional nonlinear differential equations [ 15- 
191. Compared with the continuous case, the study of discrete integrable systems has 
received relatively less attention. In [3,20,21], different nonlinear superposition formulae 
for the Toda equation were considered. It is noted that recently Shabat et ul have indicated 
a general connection between one-dimensional lattices with local symmehies and nonlinear 
integrable partial differential equations in 1 + 1 dimensions (e.g. [22,23], also see Levi’s 
results [24]). A good example is provided by the Toda lattice representation of the nonlinear 
Schrdinger coupled equations [22]. Thus it seems to be more desirable to investigate 
discrete integrable systems directly. In this paper, we are going to prove the nonlinear 
superposition formulae of the differential-difference analogue of the KdV equation and two- 
dimensional Toda equation rigorously. 

The content of this paper is organized as follows. In section 2, a nonlinear superposition 
formula of the differential-difference analogue of the KdV equation is shown. As an 
application of this result, some particular solutions of differential-difference analogue of 
the KdV equation are obtained. A ET and a nonlinear superposition formula for the two- 
dimensional Toda equation are described in section 3. In section 4, conclusions and a 
discussion are given. Finally we list some bilinear operator identities which are used in the 
paper in the appendix. 
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2. Nonlinear superposition formula of the differential-difference analogue of the KdV 
equation 

The differential-difference analogue of the KdV equation under consideration is (251 

(A) = W,-I/Z - Wn+1/2. dt 1 + w,, 
By means of a variable transformation 

(1) is reduced to the bilinear equation [26] 

sinh(aD,)[D, + 2sinh(iD.)]f, fn = 0 

where the bilinear operators are defined as follows [25,27] 

A ET for (2) is given by [26] 

[D ,  + Zhsinh(&Dn)]fn. f,‘ = 0 cosh($D,)f., f, = hf.f,. (3) 

Here and after, we always denote f , ( t )  = f ( n ,  t )  = f ( n )  = f without confusion. Now let 
fo be a solution of differential-difference analogue of the KdV equation (2). Suppose that 
fi (i = 1, 2) is a solution of (2) which-is related by fo under BT (3) with hi, i.e. f&fi 
(i = I ,  2), f; # 0 (i = 0.1,2) and that f12 is defined by 

cosh(aDn)fo. fiz = ksinh(aD.)fi fi 

(where k = k ( t )  is some non-zero function of I )  
From these assumptions, we deduce that 

(4) 
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which implies 
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Further we assume that fo(n + c ) - b f i ( n  + E ) ,  (i = 1,2andc is an arbitrary constant). 
Similar to the above deduction, we have 

A 

which implies that, by noting fo # 0, 
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which implies that 

where c( t )  is some function oft. 



From (1 I), we get 

- 

l f o f t a  = 0. (1  1') 
kt 

kk@z -hi) 
O [ c ( t )  - - 

By the use of (1 l'), similar to the deduction of (lo), we can show that 

Similarly, we can show 

[Dl + 211 sinh(fD,,)l f z .  ,& = 0. 
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Equations (7'), @'), (14) and (15) imply that f;z is a new solution of differential-difference 
analogue of the KdV equation (2). 

To sum up, we can seek particular solutions of the differential-difference analogue of 
the KdV equation via the following steps. First choose a given solution fo of (2). Second 
from BT (3), we find fl and f2 such that fo(n + e)&ifi(n + 6) (i = 1,2,  E arbitrary 
constant) and further get a partgular solution fiz from (4). Finally we substitute f i z  into 
(11) and determine c(r) .Then flz = x ( t ) f l z  is a new solution of (2). where z(t) is given 
by (13). 

In what follows, we give two illustrative examples. 
(i) Choose fo = 1. It is easily verified that 

Therefore 

- sinh(i(p1 + ,~2))e"'-~l + sinh(l(p2 - p~))e-~'-"] 

is a solution of (2). where v i  = pin - sinh(pi)t + $ and pi, 11: are constants ( i  = 1,2). 
(ii) It is easily verified that 

[2(t - n) sinh($p) sinh(t)) 
1 

/ - 1 + cosh(4p) 
1 

1 1 

cosh(fp) eq + e-'1 

+ cosh(4p) cosh(v)J. 

Therefore -]/(I + cosh(ip))[Z(t - n) sinh(fp) sinh(q) + cosh($p) cosh(q)] is also a 
solution of (Z), where I )  = pn - sinh(p)r + 4' and p, vo are constants. 

3. Nonlinear superposition formula of two-dimensional Toda equation 

In 1915. Darboux introduced the nonlinear differential-difference equation [28] 
82 

By introducing a new variable Qn related to h, by 

h, = exp(Q.-l - Qd. 
We can represent (16) in the form 
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We refer to (17) as the two-dimensional Toda lattice equation. So far, much research on 
(17) has been conducted. For example, Mikhailov 1291 established the integrability of (17). 
In addition a Darboux transformation for (17) has been introduced [30]. In this section. 
we shall establish a nonlinear superposition formula for the two-dimensional Toda lattice 
equation. To this end, we introduce h, = ( a 2 / a x a y )  Infn (or Q. = InfJfn+l), then (16) 
(or (17)) can be reduced to 

[LILOy - 4sinh2(&D.)]fn fn =O.  (18) 

Concerning (18). we have the following results. 

Proposition 1. A BT for (18) is 

(ox +A-' exp(-Dn) + p)fn . f,' = o 
[Dy  exp(-$Dn) - Xexp( i4 )  + y exp(-;Dn)lf f, = 0 

(19a) 

(19b) 

where X ,  p ,  y are arbitrary constants, 

Proof. 
f and f:, and satisfy 

Let f, and f, be two solutions of (18). If we can find two equations which relate 

P = f C [ D x D r  -4 sinhz(iD.)]fn. fa- f , [D,Dy -4sinh2(aD,)]f,'. fi = 0. 

This is then a BT. Here we show that p94)  and (19b) indeed provide a BT for (18). 
Making use of (A.ll)-(A.13), (19a) and (19b), P can be rewritten as 

P = 2 D , ( D x f  $). fnf,' - 4sinh(;Dn)[exp($4)f . f.'l' [exp(- ih)f ,  R I  
= - 2X-'D,[exp(--Dn)f, f,l f,,f.' 

- 4sinh(fD.)[exp(fD")f, f , I .  [exp(-fD,)f,, f.'l 
= 4sinh(tD,)I[X-]Dyexp(-~D,) - exp($D,)]f, f,'] . [exp(-fD,)f,, . fil 
= 0. 

Thus we have completed the proof of the proposition 1. 0 

In the following, we always denote f n ( x ,  y )  = f ( n ,  x ,  y )  = f ( n )  = f without 
confusion. 

Proposirion 2 .  Let fo be a solution of (18) and suppose that fi ( i  = 1.2) is a solution 
of (18). which is related by fo under BT (19) with (Xi, pi ,  yi), i.e. fo -+ fi (i = 1,2), 
X l X 2  # 0, fi # 0 ( j  = 0,1,2). Then f i 2  defined by 

exp(-$D,,)fo.fiz = k[Xl e x p ( - i D , ) - X z e x p ( - : D ~ ) ] f ,  .fi 

( L P ; . Y , )  

(k  is a non-zem constant) 

(20) 

is a new solution which is related by f, ,and fi under BT (19) with parameters (Az. pz, fi), 
(11, P I ,  n) respectively. 
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4. Conclusion and discussion 

In this paper. we have given nonlinear superposition formulae for the differential-difference 
analogue of the Kdv equation and the two-dimensional Toda equation. As an illustrative 
application of the obtained result, some particular solutions of the differential-difference 
analogue of the KdV equation have been obtained. 

It is noted that when x = y = t in (18), (18) reduces to the one-dimensional Toda 
equation. 

(23) [D: - 4sinh2(fD,)lfn fn = 0. 
Thus we immediately obtain the coressponding BT from (19). which generalizes the 
results in [27,31], and further a nonlinear superposition formula of one-dimensional Toda 
equation (23). It is also noted that a BT and nonlinear superposition formula of one- 
dimensional Toda equation were given in [20,21]. It is easily proved that (19) and (20) 
with x = y = t  can be reduced to those in [20.21]. Furthermore, we note that Hirota and 
Satsuma [3] presented another BT for (23) 

which is of the same form (3), and derived the corresponding nonlinear superposition 
formula 

cosh(iD,,)fo. j i z  =ksinh(~D,,)fi  . f2 (25) 
from the commutability of BT. Now, similar to the deduction of section 2, we can prove 
nonlinear superposition formula (25) rigorously. The unique difference lies in the deduction 
of (11). This can be overcome by noticing that 

0 = f,[Df -4sinh2(6D,)]f, . fi - f;[D: -4sinh2(~D.)]f2~ f2 

(A.14QA.15) - 2D,(Dtfi fd f1f2  - gsinh(~D.)[sinh(lD.)fi f 2 1 '  [cosh(fD,)fi f 2 1  

Finally, it would be of interest to note that the one-dimensional Toda equation (23) has two 
different nonlinear superposition formulae. Just as for the differential-difference analogue 
of the KdV equation, from (20) and (25) and their corresponding Backlund transformations 
respectively, we can get both the following solutions of the one-dimensional Toda equation 

jn = sinh(f(p1 - p2))e"1'+R* + sinh(f(p, + pZ))e"--"' - sinh(&(p, + pz))eqz2-"' 

+ sinh(i(p2 -pl))e-q"-a 

fn = 2(t - n) sinh(ip) sinh(q) t cosh(ip)cosh(q) 

with qi = p,n -sinh(pi)t + qy, pi, if are constants ( i  = 1.2) and 

with q = pn -sinh(p)t + qo and p.  qo are constants. It seems that BT (24) is not a limiting 
case of 67 (19) with x = y = t .  The differences between (24), (25) and (19), (20) with 
x = y = t remains to be studied further. 
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Appendix 

The following bilinear operator identities hold for arbitrary functions a,  b, c and d 

[cosh(cD,)a b]c - [cosh(tD.)a. c]b 

( i n )  = a(n + e)exp --E- sinh(-ieD),)b c t a(n - E )  

x exp - E -  sinh(fcD,)b c (i :n) 

[cosh(ED,)a . b]c + [cosh(ED,)a . c]b 

=a(n+s)exp  - - e -  cosh(ieD.)b.c+a(n-6) ( :n) 

i a  
x exp ( 2 ~ ~ )  cosh(ktD.)b c 

[cosh(2cDn)a. blcd - [cosh(2eD,)c dlab 

= 2(sinh(eD.)[sinh(rD")u .4 . [cosh(sD.)c . b] 
+ sinh(tD,)[cosh(eD,)u . dl . [sinh(sD.)c bll 

sinh(sDn)a .a  = 0 

(D,a. b)c - (D,a c)b = -aD,b c 

[sinh(eD,)a . b]c - [sinh(sD,)a clb 

= a(n + s)exp - - E -  sinh(-itD,)b. c - a(n - E )  ( i i n )  
x exp ( l~an> i a  sinh(feDn)b. c 

[sinh(<D,)a . blc + [sinh(cD,)a . clb 

=a (n+s )exp  --E- cosh(feD,Jb.c-a(n-E) ( i i n )  

x exp - E -  cosh(feD,,)b. c (i :n) (A.7) 
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[cosh($D.)b . b][sinh($D")sinh(~D.)a ' a ]  - [cosh(iD,)a I a][sinh(~Dn) sinh(iD,b bl 

=Zsinh(tD,)[sinh(fD.)a bl [cosh($D,)a bl (A.% 

D,[sinh(cD,,)a. b] . [cosh(cD,)a. b] = sinh(cD.)(D,a . b) 'ab  (A.lO) 

(D,Dya.a)bz-a2D,Dyb.b=2DyID,a.b).ab (A.11) 

[sinh2(eD,)a . a]bZ - a2[sinhz(6D,)b bl 
= sinh(tD,)[exp(tD,)a b] [exp(-cD,)a. b] (A.12) 

(A. 13) 

(A.14) 

D,[exp(ZcD,)a . b] . a b  = sinh(cD,)[D, exp(rD,)a b] . [exp(eD,)a. bl 

(D:a. a)b2 - a2D:b b = 2D,(Dla b )  ab 

[sinh2(6D,Ja a]b2 - a2[sinh2(6D,)b. b 

= 2sinh(cD,)[sinh(eD,)a , b] , [cosh(tD,)a , bl. (A. 15) 
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